Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sci Rep ; 14(1): 6229, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486006

RESUMO

Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.


Assuntos
Cálcio , Fenotiazinas , Inibidores da Agregação Plaquetária , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Cálcio/metabolismo , Trombina/metabolismo , Sinalização do Cálcio , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária , Cálcio da Dieta/farmacologia , Agregação Plaquetária
2.
FASEB J ; 38(4): e23468, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334433

RESUMO

The endothelial regulation of platelet activity is incompletely understood. Here we describe novel approaches to find molecular pathways implicated on the platelet-endothelium interaction. Using high-shear whole-blood microfluidics, employing coagulant or non-coagulant conditions at physiological temperature, we observed that the presence of human umbilical vein endothelial cells (HUVEC) strongly suppressed platelet adhesion and activation, via the collagen receptor glycoprotein VI (GPVI) and the PAR receptors for thrombin. Real-time monitoring of the cytosolic Ca2+ rises in the platelets indicated no major improvement of inhibition by prostacyclin or nitric oxide. Similarly under stasis, exposure of isolated platelets to HUVEC reduced the Ca2+ responses by collagen-related peptide (CRP-XL, GPVI agonist) and thrombin (PAR agonist). We then analyzed the label-free phosphoproteome of platelets (three donors), exposed to HUVEC, CRP-XL, and/or thrombin. High-resolution mass spectrometry gave 5463 phosphopeptides, corresponding to 1472 proteins, with good correlation between biological and technical replicates (R > .86). Stringent filtering steps revealed 26 regulatory pathways (Reactome) and 143 regulated kinase substrates (PhosphoSitePlus), giving a set of protein phosphorylation sites that was differentially (44) or similarly (110) regulated by HUVEC or agonist exposure. The differential regulation was confirmed by stable-isotope analysis of platelets from two additional donors. Substrate analysis indicated major roles of poorly studied protein kinase classes (MAPK, CDK, DYRK, STK, PKC members). Collectively, these results reveal a resetting of the protein phosphorylation profile in platelets exposed to endothelium or to conventional agonists and to endothelium-promoted activity of a multi-kinase network, beyond classical prostacyclin and nitric oxide actors, that may contribute to platelet inhibition.


Assuntos
Glicoproteínas da Membrana de Plaquetas , Trombina , Humanos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombina/metabolismo , Proteínas Quinases/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Ativação Plaquetária/fisiologia , Plaquetas/metabolismo , Endotélio/metabolismo , Prostaglandinas I
3.
Cell Mol Life Sci ; 81(1): 44, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236412

RESUMO

The platelet receptors, glycoprotein VI (GPVI) and integrin α2ß1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2ß1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2ß1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2ß1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2ß1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2ß1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2ß1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2ß1 engagement.


Assuntos
Integrina alfa2beta1 , Trombose , Humanos , Integrina alfa2beta1/genética , Plaquetas , Glicoproteínas , Colágeno , Trombose/genética
4.
Blood Adv ; 7(21): 6717-6731, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37648671

RESUMO

Red blood cells (RBCs) and platelets contribute to the coagulation capacity in bleeding and thrombotic disorders. The thrombin generation (TG) process is considered to reflect the interactions between plasma coagulation and the various blood cells. Using a new high-throughput method capturing the complete TG curve, we were able to compare TG in whole blood and autologous platelet-rich and platelet-poor plasma to redefine the blood cell contributions to the clotting process. We report a faster and initially higher generation of thrombin and shorter coagulation time in whole blood than in platelet-rich plasma upon low concentrations of coagulant triggers, including tissue factor, Russell viper venom factor X, factor Xa, factor XIa, and thrombin. The TG was accelerated with increased hematocrit and delayed after prior treatment of RBC with phosphatidylserine-blocking annexin A5. RBC treatment with ionomycin increased phosphatidylserine exposure, confirmed by flow cytometry, and increased the TG process. In reconstituted blood samples, the prior selective blockage of phosphatidylserine on RBC with annexin A5 enhanced glycoprotein VI-induced platelet procoagulant activity. For patients with anemia or erythrocytosis, cluster analysis revealed high or low whole-blood TG profiles in specific cases of anemia. The TG profiles lowered upon annexin A5 addition in the presence of RBCs and thus were determined by the extent of phosphatidylserine exposure of blood cells. Profiles for patients with polycythemia vera undergoing treatment were similar to that of control subjects. We concluded that RBC and platelets, in a phosphatidylserine-dependent way, contribute to the TG process. Determination of the whole-blood hypo- or hyper-coagulant activity may help to characterize a bleeding or thrombosis risk.


Assuntos
Anemia , Coagulantes , Trombose , Humanos , Trombina/metabolismo , Fosfatidilserinas , Anexina A5 , Eritrócitos/metabolismo
5.
Blood Adv ; 7(20): 6163-6177, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37389831

RESUMO

Linking the genetic background of patients with bleeding diathesis and altered platelet function remains challenging. We aimed to assess how a multiparameter microspot-based measurement of thrombus formation under flow can help identify patients with a platelet bleeding disorder. For this purpose, we studied 16 patients presenting with bleeding and/or albinism and suspected platelet dysfunction and 15 relatives. Genotyping of patients revealed a novel biallelic pathogenic variant in RASGRP2 (splice site c.240-1G>A), abrogating CalDAG-GEFI expression, compound heterozygosity (c.537del, c.571A>T) in P2RY12, affecting P2Y12 signaling, and heterozygous variants of unknown significance in the P2RY12 and HPS3 genes. Other patients were confirmed to have Hermansky-Pudlak syndrome type 1 or 3. In 5 patients, no genetic variant was found. Platelet functions were assessed via routine laboratory measurements. Blood samples from all subjects and day controls were screened for blood cell counts and microfluidic outcomes on 6 surfaces (48 parameters) in comparison with those of a reference cohort of healthy subjects. Differential analysis of the microfluidic data showed that the key parameters of thrombus formation were compromised in the 16 index patients. Principal component analysis revealed separate clusters of patients vs heterozygous family members and control subjects. Clusters were further segregated based on inclusion of hematologic values and laboratory measurements. Subject ranking indicated an overall impairment in thrombus formation in patients carrying a (likely) pathogenic variant of the genes but not in asymptomatic relatives. Taken together, our results indicate the advantages of testing for multiparametric thrombus formation in this patient population.

6.
Thromb Res ; 228: 105-116, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302266

RESUMO

INTRODUCTION: The protein tyrosine phosphatase SHP2 (PTPN11) is a negative regulator of glycoprotein VI (GPVI)-induced platelet signal under certain conditions. Clinical trials with derivatives of the allosteric drug SHP099, inhibiting SHP2, are ongoing as potential therapy for solid cancers. Gain-of-function mutations of the PTPN11 gene are observed in part of the patients with the Noonan syndrome, associated with a mild bleeding disorder. Assessment of the effects of SHP2 inhibition in platelets from controls and Noonan syndrome patients. MATERIALS AND METHODS: Washed human platelets were incubated with SHP099 and stimulated with collagen-related peptide (CRP) for stirred aggregation and flow cytometric measurements. Whole-blood microfluidics assays using a dosed collagen and tissue factor coating were performed to assess shear-dependent thrombus and fibrin formation. Effects on clot formation were evaluated by thromboelastometry. RESULTS: Pharmacological inhibition of SHP2 did not alter GPVI-dependent platelet aggregation under stirring, but it enhanced integrin αIIbß3 activation in response to CRP. Using whole-blood microfluidics, SHP099 increased the thrombus buildup on collagen surfaces. In the presence of tissue factor and coagulation, SHP099 increased thrombus size and reduced time to fibrin formation. Blood from PTPN11-mutated Noonan syndrome patients, with low platelet responsiveness, after ex vivo treatment with SHP099 showed a normalized platelet function. In thromboelastometry, SHP2 inhibition tended to increase tissue factor-induced blood clotting profiles with tranexamic acid, preventing fibrinolysis. CONCLUSION: Pharmacological inhibition of SHP2 by the allosteric drug SHP099 enhances GPVI-induced platelet activation under shear conditions with a potential to improve platelet functions of Noonan syndrome patients.


Assuntos
Síndrome de Noonan , Trombose , Humanos , Plaquetas/metabolismo , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Tromboplastina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Colágeno/metabolismo , Fibrina/metabolismo , Glicoproteínas da Membrana de Plaquetas , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
7.
Cell Calcium ; 112: 102738, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060673

RESUMO

In platelets, elevated cytosolic Ca2+ is a crucial second messenger, involved in most functional responses, including shape change, secretion, aggregation and procoagulant activity. The platelet Ca2+ response consists of Ca2+ mobilization from endoplasmic reticulum stores, complemented with store-operated or receptor-operated Ca2+ entry pathways. Several channels can contribute to the Ca2+ entry, but their relative contribution is unclear upon stimulation of ITAM-linked receptors such as glycoprotein VI (GPVI) and G-protein coupled receptors such as the protease-activated receptors (PAR) for thrombin. We employed a 96-well plate high-throughput assay with Fura-2-loaded human platelets to perform parallel [Ca2+]i measurements in the presence of EGTA or CaCl2. Per agonist condition, this resulted in sets of EGTA, CaCl2 and Ca2+ entry ratio curves, defined by six parameters, reflecting different Ca2+ ion fluxes. We report that threshold stimulation of GPVI or PAR, with a variable contribution of secondary mediators, induces a maximal Ca2+ entry ratio of 3-7. Strikingly, in combination with Ca2+-ATPase inhibition by thapsigargin, the maximal Ca2+ entry ratio increased to 400 (GPVI) or 40 (PAR), pointing to a strong receptor-dependent enhancement of store-operated Ca2+ entry. By pharmacological blockage of specific Ca2+ channels in platelets, we found that, regardless of GPVI or PAR stimulation, the Ca2+ entry ratio was strongest affected by inhibition of ORAI1 (2-APB, Synta66) > Na+/Ca2+ exchange (NCE) > P2×1 (only initial). In contrast, inhibition of TRPC6, Piezo1/2 or STIM1 was without effect. Together, these data reveal ORAI1 and NCE as dominating Ca2+ carriers regulating GPVI- and PAR-induced Ca2+ entry in human platelets.


Assuntos
Plaquetas , Canais de Cálcio , Humanos , Plaquetas/metabolismo , Canais de Cálcio/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/farmacologia , Cloreto de Cálcio/farmacologia , Ácido Egtázico/metabolismo , Sinalização do Cálcio , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Proteína ORAI1/metabolismo , Canais Iônicos/metabolismo
8.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955827

RESUMO

Glycoprotein (GP)VI and integrin αIIbß3 are key signaling receptors in collagen-dependent platelet aggregation and in arterial thrombus formation under shear. The multiple downstream signaling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen receptor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by eight parameters (with script descriptions enclosed). The suppressive rather than activating effects of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1 no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a shear-dependent signaling axis of PTK2, integrin αIIbß3, and CIB1 in collagen- and GPVI-dependent thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby supports the role of PTK2 in integrin αIIbß3 activation and signaling.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombose , Plaquetas/metabolismo , Colágeno/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , Ativação Plaquetária , Adesividade Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216161

RESUMO

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Assuntos
Plaquetas/fisiologia , Peptídeos/química , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células Cultivadas , Cavalos , Humanos , Microfluídica , Peptídeos/metabolismo , Ligação Proteica , Estresse Mecânico , Fator de von Willebrand/metabolismo
10.
iScience ; 25(1): 103718, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35072010

RESUMO

Antiplatelet drugs targeting G-protein-coupled receptors (GPCRs), used for the secondary prevention of arterial thrombosis, coincide with an increased bleeding risk. Targeting ITAM-linked receptors, such as the collagen receptor glycoprotein VI (GPVI), is expected to provide a better antithrombotic-hemostatic profile. Here, we developed and characterized an ultra-high-throughput (UHT) method based on intracellular [Ca2+]i increases to differentiate GPVI and GPCR effects on platelets. In 96-, 384-, or 1,536-well formats, Calcium-6-loaded human platelets displayed a slow-prolonged or fast-transient [Ca2+]i increase when stimulated with the GPVI agonist collagen-related peptide or with thrombin and other GPCR agonists, respectively. Semi-automated curve fitting revealed five parameters describing the Ca2+ responses. Verification of the UHT assay was done with a robustness compound library and clinically relevant platelet inhibitors. Taken together, these results present proof of principle of distinct receptor-type-dependent Ca2+ signaling curves in platelets, which allow identification of new inhibitors in a UHT way.

11.
Thromb Haemost ; 122(1): 92-104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34130349

RESUMO

BACKGROUND: Sunitinib is a multitarget tyrosine kinase inhibitor (TKI) used for cancer treatment. In platelets, sunitinib affects collagen-induced activation under noncoagulating conditions. We investigated (1) the effects of sunitinib on thrombus formation induced by other TK-dependent receptors, and (2) the effects under coagulating conditions. Cardiovascular disease is a comorbidity in cancer patients, resulting in possible aspirin treatment. Sunitinib and aspirin are associated with increased bleeding risk, and therefore we also investigated (3) the synergistic effects of these compounds on thrombus and fibrin formation. METHODS: Blood or isolated platelets from healthy volunteers or cancer patients were incubated with sunitinib and/or aspirin or vehicle. Platelet activation was determined by TK phosphorylation, flow cytometry, changes in [Ca2+]i, aggregometry, and whole blood perfusion over multiple surfaces, including collagen with(out) tissue factor (TF) was performed. RESULTS: Sunitinib reduced thrombus formation and phosphatidylserine (PS) exposure under flow on collagen type I and III. Also, sunitinib inhibited glycoprotein VI-induced TK phosphorylation and Ca2+ elevation. Upon TF-triggered coagulation, sunitinib decreased PS exposure and fibrin formation. In blood from cancer patients more pronounced effects of sunitinib were observed in lung and pancreatic as compared to neuroglioblastoma and other cancer types. Compared to sunitinib alone, sunitinib plus aspirin further reduced platelet aggregation, thrombus formation, and PS exposure on collagen under flow with(out) coagulation. CONCLUSION: Sunitinib suppresses collagen-induced procoagulant activity and delays fibrin formation, which was aggravated by aspirin. Therefore, we urge for awareness of the combined antiplatelet effects of TKIs with aspirin, as this may result in increased risk of bleeding.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Sunitinibe/farmacologia , Aspirina/metabolismo , Aspirina/farmacologia , Coagulação Sanguínea/fisiologia , Humanos , Agregação Plaquetária/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sunitinibe/uso terapêutico , Trombose/tratamento farmacológico , Trombose/prevenção & controle
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681859

RESUMO

Current antiplatelet drugs for the treatment of arterial thrombosis often coincide with increased bleeding risk. Several tyrosine kinase inhibitors (TKIs) for cancer treatment inhibit platelet function, with minor reported bleeding symptoms. The aim of this study was to compare the antiplatelet properties of eight TKIs to explore their possible repurposing as antiplatelet drugs. Samples of whole blood, platelet-rich plasma (PRP), or isolated platelets from healthy donors were treated with TKI or the vehicle. Measurements of platelet aggregation, activation, intracellular calcium mobilization, and whole-blood thrombus formation under flow were performed. Dasatinib and sunitinib dose-dependently reduced collagen-induced aggregation in PRP and washed platelets; pazopanib, cabozantinib, and vatalanib inhibited this response in washed platelets only; and fostamatinib, axitinib, and lapatinib showed no/limited effects. Fostamatinib reduced thrombus formation by approximately 50% on collagen and other substrates. Pazopanib, sunitinib, dasatinib, axitinib, and vatalanib mildly reduced thrombus formation on collagen by 10-50%. Intracellular calcium responses in isolated platelets were inhibited by dasatinib (>90%), fostamatinib (57%), sunitinib (77%), and pazopanib (82%). Upon glycoprotein-VI receptor stimulation, fostamatinib, cabozantinib, and vatalanib decreased highly activated platelet populations by approximately 15%, while increasing resting populations by 39%. In conclusion, the TKIs with the highest affinities for platelet-expressed molecular targets most strongly inhibited platelet functions. Dasatinib, fostamatinib, sunitinib, and pazopanib interfered in early collagen receptor-induced molecular-signaling compared with cabozantinib and vatalanib. Fostamatinib, sunitinib, pazopanib, and vatalanib may be promising for future evaluation as antiplatelet drugs.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Colágeno/farmacologia , Dasatinibe/farmacologia , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Humanos , Morfolinas/farmacologia , Ftalazinas/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Trombose/sangue , Trombose/tratamento farmacológico
13.
Platelets ; 32(7): 863-871, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33356720

RESUMO

Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)ß isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.


Assuntos
Anoctaminas/metabolismo , Plaquetas/metabolismo , Sinalização do Cálcio/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos
14.
Thromb Haemost ; 120(4): 538-564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32289858

RESUMO

Thrombo-inflammation describes the complex interplay between blood coagulation and inflammation that plays a critical role in cardiovascular diseases. The third Maastricht Consensus Conference on Thrombosis assembled basic, translational, and clinical scientists to discuss the origin and potential consequences of thrombo-inflammation in the etiology, diagnostics, and management of patients with cardiovascular disease, including myocardial infarction, stroke, and peripheral artery disease. This article presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following topics: (1) challenges of the endothelial cell barrier; (2) circulating cells and thrombo-inflammation, focused on platelets, neutrophils, and neutrophil extracellular traps; (3) procoagulant mechanisms; (4) arterial vascular changes in atherogenesis; attenuating atherosclerosis and ischemia/reperfusion injury; (5) management of patients with arterial vascular disease; and (6) pathogenesis of venous thrombosis and late consequences of venous thromboembolism.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Endotélio Vascular/fisiologia , Inflamação/imunologia , Neutrófilos/imunologia , Tromboembolia Venosa/imunologia , Animais , Aterosclerose/diagnóstico , Aterosclerose/terapia , Coagulação Sanguínea , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Prova Pericial , Humanos , Imunidade Inata , Trombose , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/terapia
15.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181592

RESUMO

Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2ß1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Quinase Syk/metabolismo , Trombose/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Células Cultivadas , Colágeno/química , Cicloexilaminas/farmacologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregação Plaquetária , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Quinase Syk/antagonistas & inibidores
16.
J Exp Med ; 216(5): 1108-1119, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30944152

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common cancer type and the fourth leading cause of cancer-related death. This cancer appears with higher incidence in men and during obesity; however, the specific mechanisms underlying this correlation are unknown. Adipose tissue, a key organ in metabolic syndrome, shows evident gender disparities in the production of adipokines. Levels of the important adipokine adiponectin decrease in men during puberty, as well as in the obese state. Here, we show that this decrease in adiponectin levels is responsible for the increased liver cancer risk in males. We found that testosterone activates the protein JNK in mouse and human adipocytes. JNK-mediated inhibition of adiponectin secretion increases liver cancer cell proliferation, since adiponectin protects against liver cancer development through the activation of AMP-activated protein kinase (AMPK) and p38α. This study provides insight into adipose tissue to liver crosstalk and its gender relation during cancer development, having the potential to guide strategies for new cancer therapeutics.


Assuntos
Adiponectina/sangue , Carcinoma Hepatocelular/epidemiologia , Cálculos Biliares/sangue , Neoplasias Hepáticas/epidemiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adiponectina/genética , Tecido Adiposo/metabolismo , Animais , Estudos de Coortes , Feminino , Cálculos Biliares/cirurgia , Humanos , Incidência , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Obesidade/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...